已知函数定义域为R,且,对任意恒有,
(1)求函数的表达式;
(2)若方程=有三个实数解,求实数的取值范围;
【解析】第一问中,利用因为,对任意恒有,
第二问中,因为方程=有三个实数解,所以
又因为当;
当从而得到范围。
【解析】
(1)因为,对任意恒有,
(2)因为方程=有三个实数解,所以
又因为,当;
当;当
,
为了解某班学生喜爱打羽毛球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
|
喜爱打羽毛球 |
不喜爱打羽毛球 |
合计 |
男生 |
|
5 |
|
女生 |
10 |
|
|
|
|
|
50 |
已知在全部50人中随机抽取1人抽到不喜爱打羽毛球的学生的概率
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打羽毛球与性别有关?说明你的理由;
(3)已知喜爱打羽毛球的10位女生中,还喜欢打篮球,还喜欢打乒乓球,还喜欢踢足球,现在从喜欢打篮球、喜欢打乒乓球、喜欢踢足球的6位女生中各选出1名进行其他方面的调查,求女生和不全被选中的概率.下面的临界值表供参考:
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:其中.)
【解析】第一问利用数据写出列联表
第二问利用公式计算的得到结论。
第三问中,从6位女生中选出喜欢打篮球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件如下:
, ,
基本事件的总数为8
用表示“不全被选中”这一事件,则其对立事件表示“全被选中”这一事件,由于由 2个基本事件由对立事件的概率公式得
【解析】
(1) 列联表补充如下:
|
喜爱打羽毛球 |
不喜爱打羽毛球 |
合计 |
男生 |
20 |
5 |
25 |
女生 |
10 |
15 |
25 |
合计 |
30 |
20 |
50 |
(2)∵
∴有99.5%的把握认为喜爱打篮球与性别有关
(3)从6位女生中选出喜欢打篮球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件如下:
, ,
基本事件的总数为8,
用表示“不全被选中”这一事件,则其对立事件表示“全被选中”这一事件,由于由 2个基本事件由对立事件的概率公式得.
设函数,其中为自然对数的底数.
(1)求函数的单调区间;
(2)记曲线在点(其中)处的切线为,与轴、轴所围成的三角形面积为,求的最大值.
【解析】第一问利用由已知,所以,
由,得, 所以,在区间上,,函数在区间上单调递减; 在区间上,,函数在区间上单调递增;
第二问中,因为,所以曲线在点处切线为:.
切线与轴的交点为,与轴的交点为,
因为,所以,
, 在区间上,函数单调递增,在区间上,函数单调递减.所以,当时,有最大值,此时,
【解析】
(Ⅰ)由已知,所以,
由,得, 所以,在区间上,,函数在区间上单调递减;
在区间上,,函数在区间上单调递增;
即函数的单调递减区间为,单调递增区间为.
(Ⅱ)因为,所以曲线在点处切线为:.
切线与轴的交点为,与轴的交点为,
因为,所以,
, 在区间上,函数单调递增,在区间上,函数单调递减.所以,当时,有最大值,此时,
所以,的最大值为
已知集合
A=, B=.
(1)若,求A∩B,;
(2)若A,求实数m的取值范围。
【解析】第一问首先翻译A,B为最简集合,即为
A=
B=
然后利用当m=-1时,则有 B=
,
第二问,因为A,
所以满足A
得到结论。
【解析】
因为A=
,
B=
当m=-1时,则有 B=
,
(2) 因为A,
所以满足A
故
已是抛物线上的一点,过点的切线方程的斜率可通过如下方式求得: 在两边同时对x求导,得:,所以过的切线的斜率:,试用上述方法求出双曲线在处的切线方程为___________.
下列命题中:①函数的最小值是;②对于任意实数,有且时,, ,则时,;③如果是可导函数,则是函数在处取到极值的必要不充分条件;④已知存在实数使得不等式成立,则实数的取值范围是。其中正确的命题是___________.