如图,一个小球从M处投入,通过管道自上而下落A或B或C。已知小球从每个叉口落入左右两个 管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为l,
2,3等奖.(I)已知获得l,2,3等奖的折扣率分别为50%,70%,90%.记随变量为获得k(k=1,2,3)等奖的折扣率,求随机变量的分布列及期望;(II)若有3人次(投入l球为l人次)参加促销活动,记随机变量为获得1等奖或2等奖的人次,求.
在数列{}中,=1,(1)求
写出数列{}的通项公式(不要求证明);(2)求证:对于任意的n都有;(3)设 证明:数列{}不存在成等差数列的三项。
设函数(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)有三个不同的实数解,求的取值范围.
若某人在点测得金字塔顶端仰角为,此人往金字塔方向走了80米到达点,测得金字塔顶端的仰角为,则金字塔的高度最接近于(忽略人的身高)( )米
A. B. C. D.
函数的最大值为( )
A.1 B. C. D.
已知两单位向量满足,则与的夹角为( )
A. B. C. D.