(1)已知函数f(x)=x-ax+(a-1),。讨论函数的单调性;
(2).已知函数f (x)=lnx,g(x)=ex.设直线l为函数 y=f (x) 的图象上一点A(x0,f (x0))处的切线.问在区间(1,+∞)上是否存在x0,使得直线l与曲线y=g(x)也相切.若存在,这样的x0有几个?,若没有,则说明理由。
如图,己知平行四边形ABCD中,∠ BAD = 600,AB=6, AD=3,G为CD中点,现将梯形ABCG沿着AG折起到AFEG。
(I)求证:直线CE//平面ABF;
(II)如果FG⊥平面ABCD求二面B一EF一A的平面角的余弦值.
(Ⅲ)若直线AF与平面 ABCD所成角为,求证:FG⊥平面ABCD
如图,一个小球从M处投入,通过管道自上而下落A或B或C。已知小球从每个叉口落入左右两个 管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为l,
2,3等奖.(I)已知获得l,2,3等奖的折扣率分别为50%,70%,90%.记随变量为获得k(k=1,2,3)等奖的折扣率,求随机变量的分布列及期望;(II)若有3人次(投入l球为l人次)参加促销活动,记随机变量为获得1等奖或2等奖的人次,求.
在数列{}中,=1,(1)求
写出数列{}的通项公式(不要求证明);(2)求证:对于任意的n都有;(3)设 证明:数列{}不存在成等差数列的三项。
设函数(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)有三个不同的实数解,求的取值范围.
若某人在点测得金字塔顶端仰角为,此人往金字塔方向走了80米到达点,测得金字塔顶端的仰角为,则金字塔的高度最接近于(忽略人的身高)( )米
A. B. C. D.