若函数在定义域内存在区间,满足在上的值域为,则称这样的函数为“优美函数”.
(Ⅰ)判断函数是否为“优美函数”?若是,求出;若不是,说明理由;
(Ⅱ)若函数为“优美函数”,求实数的取值范围.
【解析】第一问中,利用定义,判定由题意得,由,所以
第二问中, 由题意得方程有两实根
设所以关于m的方程在有两实根,
即函数与函数的图像在上有两个不同交点,从而得到t的范围。
解(I)由题意得,由,所以 (6分)
(II)由题意得方程有两实根
设所以关于m的方程在有两实根,
即函数与函数的图像在上有两个不同交点。
设关于的不等式,的解集是,函数 的定义域为。若“或”为真,“且”为假,求的取值范围。
【解析】本试题主要考查了命题的真智慧以及不等式的解集的综合运用。利用
若真则
若真,则 得
“或”为真,“且”为假,则、一真一假分类讨论得到。
若真则
若真,则 得 ……………………6分
“或”为真,“且”为假,则、一真一假
当真假时 ………………………………9分
当假真时 ………………………………12分
的取值范围为
对于函数,若有六个不同的单调区间,则的取值范围为 _________
若函数在处有极大值,则常数的值为_________;
观察下列各式:,则的末两位数字为_______
如图,已知是椭圆 的左、右焦点,
点在椭圆上,线段与圆相切于点,且点为线段的中点,则椭圆的离心率为 .