已知,,下列结论正确的是( )
A. ; B. ; C. ; D. .
在△ABC中,内角A、B、C所对边的边长分别是a、b、c,已知c=2,C=.
(Ⅰ)若△ABC的面积等于,求a、b;
(Ⅱ)若,求△ABC的面积.
【解析】第一问中利用余弦定理及已知条件得又因为△ABC的面积等于,所以,得联立方程,解方程组得.
第二问中。由于即为即.
当时, , , , 所以当时,得,由正弦定理得,联立方程组,解得,得到。
【解析】
(Ⅰ) (Ⅰ)由余弦定理及已知条件得,………1分
又因为△ABC的面积等于,所以,得,………1分
联立方程,解方程组得. ……………2分
(Ⅱ)由题意得,
即. …………2分
当时, , , , ……1分
所以 ………………1分
当时,得,由正弦定理得,联立方程组
,解得,; 所以
已知函数f(x)=sin(ωx+φ) (0<φ<π,ω>0)过点,函数y=f(x)图象的两相邻对称轴间的距离为.
(1) 求f(x)的解析式;
(2) f(x)的图象向右平移个单位后,得到函数y=g(x)的图象,求函数g(x)的单调递减区间.
【解析】本试题主要考查了三角函数的图像和性质的运用,第一问中利用函数y=f(x)图象的两相邻对称轴间的距离为.得,所以
第二问中,,
可以得到单调区间。
【解析】
(Ⅰ)由题意得,,…………………1分
代入点,得…………1分
, ∴
(Ⅱ), 的单调递减区间为,.
△ABC中,D在边BC上,且BD=2,DC=1,∠B=60o,∠ADC=150o,求AC的长及△ABC的面积。
【解析】本试题主要考查了余弦定理的运用。利用由题意得,
,并且有得到结论。
【解析】
(Ⅰ)由题意得,………1分…………1分
(Ⅱ)………………1分
若函数
(Ⅰ)求的最小正周期;
(Ⅱ)当时,求函数的最大值与最小值.
【解析】【解析】
(Ⅰ)……………………………1分 ………………1分
(Ⅱ),………………………………1分……………2分
已知函数,.
(Ⅰ)求的最大值;
(Ⅱ)若,求的值.
【解析】第一问中利用化为单一三角函数可知,,然后可得 第二问中,两边平方可知得到结论。……1分……………1分
,………………1分
(Ⅱ)