已知函数
(Ⅰ)若函数恰好有两个不同的零点,求的值。
(Ⅱ)若函数的图象与直线相切,求的值及相应的切点坐标。
【解析】第一问中,利用
当时,在单调递增,此时只有一个零点;
当时,或,得
第二问中,设切点为,则
所以,当时,为;当时,为
【解析】
(Ⅰ)
2分
当时,在单调递增,此时只有一个零点;
当时,或,得 4分
(Ⅱ)设切点为,则 3分
所以,当时,为;当时,为
已知,是椭圆左右焦点,它的离心率,且被直线所截得的线段的中点的横坐标为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设是其椭圆上的任意一点,当为钝角时,求的取值范围。
【解析】【解析】
因为第一问中,利用椭圆的性质由得
所以椭圆方程可设为:,然后利用
得得
椭圆方程为
第二问中,当为钝角时,, 得
所以 得
【解析】
(Ⅰ)由得
所以椭圆方程可设为:
3分
得得
椭圆方程为 3分
(Ⅱ)当为钝角时,, 得 3分
所以 得
在复平面内, 是原点,向量对应的复数是,=2+i。
(Ⅰ)如果点A关于实轴的对称点为点B,求向量对应的复数和;
(Ⅱ)复数,对应的点C,D。试判断A、B、C、D四点是否在同一个圆上?并证明你的结论。
【解析】第一问中利用复数的概念可知得到由题意得,A(2,1) ∴B(2,-1) ∴ =(0,-2) ∴=-2i ∵ (2+i)(-2i)=2-4i, ∴ =
第二问中,由题意得,=(2,1) ∴
同理,所以A、B、C、D四点到原点O的距离相等,
∴A、B、C、D四点在以O为圆心,为半径的圆上
(Ⅰ)由题意得,A(2,1) ∴B(2,-1) ∴ =(0,-2) ∴=-2i 3分
∵ (2+i)(-2i)=2-4i, ∴ = 2分
(Ⅱ)A、B、C、D四点在同一个圆上。 2分
证明:由题意得,=(2,1) ∴
同理,所以A、B、C、D四点到原点O的距离相等,
∴A、B、C、D四点在以O为圆心,为半径的圆上
已知命题“椭圆的焦点在轴上”;
命题在上单调递增,若“”为假,求的取值范围.
【解析】主要考查了命题中复合命题的真值问题的判定,以及椭圆,导数的运用。
首先求解若p为真,则m2.
若q为真,=0在R上恒成立。
所以 所以
而要是为假,则,这样就可以得到了。
若p为真,则m2. 2分
若q为真,=0在R上恒成立。
所以 所以 3分
若为假,所以为真 2分
所以m2且, 所以
椭圆的左、右焦点分别为、 , 过焦点F1的直线交椭圆于两点 ,若的内切圆的面积为,,两点的坐标分别为和,则的值为___________。
如图,在正三角形中,,
而,所以。应用类比推理,在正四面体(每个面都是正三角形的四面体)中,。