已知△ABC的内角满足若, 且满足:,,为与的夹角.
(Ⅰ)求;
(Ⅱ)求;
已知且,则的终边在( )
(A)第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限
已知向量,且与平行,则( )
(A). (B) (C). (D)
若角的终边上有一点,则( )
(A) (B) (C) (D)
如图,已知直线()与抛物线:和圆:都相切,是的焦点.
(Ⅰ)求与的值;
(Ⅱ)设是上的一动点,以为切点作抛物线的切线,直线交轴于点,以、为邻边作平行四边形,证明:点在一条定直线上;
(Ⅲ)在(Ⅱ)的条件下,记点所在的定直线为, 直线与轴交点为,连接交抛物线于、两点,求△的面积的取值范围.
【解析】第一问中利用圆: 的圆心为,半径.由题设圆心到直线的距离.
即,解得(舍去)
设与抛物线的相切点为,又,得,.
代入直线方程得:,∴ 所以,
第二问中,由(Ⅰ)知抛物线方程为,焦点. ………………(2分)
设,由(Ⅰ)知以为切点的切线的方程为.
令,得切线交轴的点坐标为 所以,, ∵四边形FAMB是以FA、FB为邻边作平行四边形
∴ 因为是定点,所以点在定直线
第三问中,设直线,代入得结合韦达定理得到。
【解析】
(Ⅰ)由已知,圆:
的圆心为,半径.由题设圆心到直线的距离.
即,解得(舍去). …………………(2分)
设与抛物线的相切点为,又,得,.
代入直线方程得:,∴ 所以,. ……(2分)
(Ⅱ)由(Ⅰ)知抛物线方程为,焦点. ………………(2分)
设,由(Ⅰ)知以为切点的切线的方程为.
令,得切线交轴的点坐标为 所以,, ∵四边形FAMB是以FA、FB为邻边作平行四边形,
∴ 因为是定点,所以点在定直线上.…(2分)
(Ⅲ)设直线,代入得, ……)得, …………………………… (2分)
,
.△的面积范围是
已知函数
(Ⅰ)若函数恰好有两个不同的零点,求的值。
(Ⅱ)若函数的图象与直线相切,求的值及相应的切点坐标。
【解析】第一问中,利用
当时,在单调递增,此时只有一个零点;
当时,或,得
第二问中,设切点为,则
所以,当时,为;当时,为
【解析】
(Ⅰ)
2分
当时,在单调递增,此时只有一个零点;
当时,或,得 4分
(Ⅱ)设切点为,则 3分
所以,当时,为;当时,为