已知,且,则的最小值为( )
A. B. C. D.
若数列的通项公式为,则( )
A.为递增数列 B.为递减数列
C.从某项后为递减数列 D.从某项后为递增数列
设等比数列的前项和为,若,则( )
A. B. C. D.
在中,若,则与的大小关系为( )
A. B.
C. D.、的大小关系不能确定
已知数列的一个通项公式为,则( )
A. B. C. D.
已知函数,.
(Ⅰ)若函数依次在处取到极值.求的取值范围;
(Ⅱ)若存在实数,使对任意的,不等式 恒成立.求正整数的最大值.
【解析】第一问中利用导数在在处取到极值点可知导数为零可以解得方程有三个不同的实数根来分析求解。
第二问中,利用存在实数,使对任意的,不等式 恒成立转化为,恒成立,分离参数法求解得到范围。
【解析】
(1)
①
(2)不等式 ,即,即.
转化为存在实数,使对任意的,不等式恒成立.
即不等式在上恒成立.
即不等式在上恒成立.
设,则.
设,则,因为,有.
故在区间上是减函数。又
故存在,使得.
当时,有,当时,有.
从而在区间上递增,在区间上递减.
又
所以当时,恒有;当时,恒有;
故使命题成立的正整数m的最大值为5