已知数列满足:
1)求的值; 2)求证数列是等差数列,并求数列的通项公式;
3)设若恒成立,求实数的取值范围.
某企业投资1千万元于一个高科技项目,每年可获利25%.由于企业间竞争激烈,每年底需要从利润中取出资金万元进行科研、技术改造与广告投入,方能保持原有的利润增长率.设经过年后该项目的资金为万元.
1)写出数列的前三项,并猜想写出通项.
2)求经过多少年后,该项目的资金可以达到或超过千万元.
已知集合,则等于( )
A. B.
C. D.
(文)(本小题14分)已知函数(为实数).
(1)当时, 求的最小值;
(2)若在上是单调函数,求的取值范围.
(理) 已知,其中是自然常数,[
(1)讨论时, 的单调性、极值;
(2)求证:在(Ⅰ)的条件下,;
(3)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.
已知椭圆的离心率,点F为椭圆的右焦点,点A、B分别为椭圆的左、右顶点,点M为椭圆的上顶点,且满足 (1)求椭圆C的方程;
(2)是否存在直线,当直线交椭圆于P、Q两点时,使点F恰为的垂心(三角形三条高的交点)?若存在,求出直线方程;若不存在,请说明理由。