已知中,,.设,记.
(1) 求的解析式及定义域;
(2)设,是否存在实数,使函数的值域为?若存在,求出的值;若不存在,请说明理由.
【解析】第一问利用(1)如图,在中,由,,
可得,
又AC=2,故由正弦定理得
(2)中
由可得.显然,,则
1当m>0的值域为m+1=3/2,n=1/2
2当m<0,不满足的值域为;
因而存在实数m=1/2的值域为.
如图,已知圆锥体的侧面积为,底面半径和互相垂直,且,是母线的中点.
(1)求圆锥体的体积;
(2)异面直线与所成角的大小(结果用反三角函数表示).
【解析】本试题主要考查了圆锥的体积和异面直线的所成的角的大小的求解。
第一问中,由题意,得,故
从而体积.2中取OB中点H,联结PH,AH.
由P是SB的中点知PH//SO,则(或其补角)就是异面直线SO与PA所成角.
由SO平面OAB,PH平面OAB,PHAH.在OAH中,由OAOB得;
在中,,PH=1/2SB=2,,
则,所以异面直线SO与P成角的大arctan
【解析】
(1)由题意,得,
故从而体积.
(2)如图2,取OB中点H,联结PH,AH.
由P是SB的中点知PH//SO,则(或其补角)就是异面直线SO与PA所成角.
由SO平面OAB,PH平面OAB,PHAH.
在OAH中,由OAOB得;
在中,,PH=1/2SB=2,,
则,所以异面直线SO与P成角的大arctan
已知函数,的图像分别与轴、轴交于、两点,且,函数. 当满足不等式时,求函数的最小值.[
【解析】本试题主要考察了函数与向量的综合运用。根据已知条件得到
对于平面、、和直线、、、,下列命题中真命题是( )
A.若,则;
B. 若则;
C. 若,则;
D. 若则.
设全集为,集合,,则集合可表示为( )
A. ; B. ; C. ; D.
设是直线的倾斜角,且,则的值为 ( )
A. ; B. ; C. ; D. .