(本小题满分12分) 已知数列的前项和为,常数,且对一切正整数都成立。
(Ⅰ)求数列的通项公式;
(Ⅱ)设,,当为何值时,数列的前项和最大?
(本小题满分12分) 如图,在三棱锥中,,,,点在平面内的射影在上。
(Ⅰ)求直线与平面所成的角的大小;
(Ⅱ)求二面角的大小。
(本小题满分12分) 已知函数。
(Ⅰ)求函数的最小正周期和值域;
(Ⅱ)若,求的值。
(本小题满分12分) 某居民小区有两个相互独立的安全防范系统(简称系统)和,系统和系统在任意时刻发生故障的概率分别为和。
(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为,求的值;
(Ⅱ)求系统在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率。
设为正实数,现有下列命题:
①若,则;
②若,则;
③若,则;
④若,则。
其中的真命题有____________。(写出所有真命题的编号)
椭圆为定值,且的的左焦点为,直线与椭圆相交于点、,的周长的最大值是12,则该椭圆的离心率是______。