设函数=的所有正的极小值点从小到大排成的数列为.
(Ⅰ)求数列的通项公式.
(Ⅱ)设的前项和为,求.
【解析】 (Ⅰ),令,可得,或,,又由极小值点定义可判定。
(Ⅱ)由(Ⅰ)知,所以,
即.
如图,分别是椭圆:+=1()的左、右焦点,是椭圆的顶点,是直线与椭圆的另一个交点,=60°.
(Ⅰ)求椭圆的离心率;
(Ⅱ)已知△的面积为40,求的值.
【解析】 (Ⅰ)由题=60°,则,即椭圆的离心率为。
(Ⅱ)因△的面积为40,设,又面积公式,又直线,
又由(Ⅰ)知,联立方程可得,整理得,解得,,所以,解得。
如图,长方体中,底面是正方形,是的中点,是棱上任意一点。
(Ⅰ)证明: ;
(Ⅱ)如果=2 ,=,, 求 的长。
【解析】(Ⅰ)因底面是正方形,故,又侧棱垂直底面,可得,而,所以面,因,所以面,又面,所以 ;
(Ⅱ)因=2 ,=,,可得,,设,由得,即,解得,即 的长为。
若某产品的直径长与标准值的差的绝对值不超过1mm 时,则视为合格品,否则视为不合格品。在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品。计算这50件不合格品的直径长与标准值的差(单位:mm), 将所得数据分组,得到如下频率分布表:
分组 |
频数 |
频率 |
[-3, -2) |
|
0.10 |
[-2, -1) |
8 |
|
(1,2] |
|
0.50 |
(2,3] |
10 |
|
(3,4] |
|
|
合计 |
50 |
1.00 |
(Ⅰ)将上面表格中缺少的数据填在答题卡的相应位置;
(Ⅱ)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;
(Ⅲ)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品。据此估算这批产品中的合格品的件数。
【解析】(Ⅰ)
分组 |
频数 |
频率 |
[-3, -2) |
5 |
0.10 |
[-2, -1) |
8 |
0.16 |
(1,2] |
25 |
0.50 |
(2,3] |
10 |
0.2 |
(3,4] |
2 |
0.04 |
合计 |
50 |
1.00 |
(Ⅱ)根据频率分布表可知,落在区间(1,3]内频数为35,故所求概率为0.7.
(Ⅲ)由题可知不合格的概率为0.01,故可求得这批产品总共有2000,故合格的产品有1980件。
设定义在(0,+)上的函数
(Ⅰ)求的最小值;
(Ⅱ)若曲线在点处的切线方程为,求的值。
【解析】 (Ⅰ)因,故,取等号的条件是,即。
(Ⅱ)因,由,求得,又由,可得,解得
设△的内角所对边的长分别为,且有
(Ⅰ)求角A的大小;
(Ⅱ)若,,为的中点,求的长。
【解析】(1)由题,,则,故,即.
(2)因,,因为的中点,故,则,所以