已知函数,(),
(1)若曲线与曲线在它们的交点(1,c)处具有公共切线,求a,b的值
(2)当时,若函数的单调区间,并求其在区间(-∞,-1)上的最大值。
【解析】(1),
∵曲线与曲线在它们的交点(1,c)处具有公共切线
∴,
∴
(2)令,当时,
令,得
时,的情况如下:
x |
|||||
+ |
0 |
- |
0 |
+ |
|
|
|
所以函数的单调递增区间为,,单调递减区间为
当,即时,函数在区间上单调递增,在区间上的最大值为,
当且,即时,函数在区间内单调递增,在区间上单调递减,在区间上的最大值为
当,即a>6时,函数在区间内单调递赠,在区间内单调递减,在区间上单调递增。又因为
所以在区间上的最大值为。
近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱。为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):
|
“厨余垃圾”箱 |
“可回收物”箱 |
“其他垃圾”箱 |
厨余垃圾 |
400 |
100 |
100 |
可回收物 |
30 |
240 |
30 |
其他垃圾 |
20 |
20 |
60 |
(Ⅰ)试估计厨余垃圾投放正确的概率
(Ⅱ)试估计生活垃圾投放错误的概率
(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c,的方差最大时,写出a,b,c的值(结论不要求证明),并求此时的值。
(注:,其中为数据的平均数)
【解析】(1)厨余垃圾投放正确的概率约为
(2)设生活垃圾投放错误为事件A,则事件表示生活垃圾投放正确。事件的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即约为,所以约为
(3)当时,方差取得最大值,因为,
所以
如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.
(1) 求证:A1C⊥平面BCDE;
(2) 若M是A1D的中点,求CM与平面A1BE所成角的大小;
(3) 线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由
【解析】(1)∵DE∥BC∴∴∴∴又∵∴
(2)如图,以C为坐标原点,建立空间直角坐标系C-xyz,
则
设平面的法向量为,则,又,,所以,令,则,所以,
设CM与平面所成角为。因为,
所以
所以CM与平面所成角为。
已知函数
(Ⅰ)求的定义域及最小正周期
(Ⅱ)求的单调递增区间。
【解析】(1)只需,∴∴的定义域为
∴最小正周期为
(2),
∴,
∴的单调递增区间为和()
已知,,若同时满足条件:
①,或,②
则m的取值范围是
已知正方形ABCD的边长为1,点E是AB边上的动点,则的值是 ,的最大值 .