设集合A={x|1<x<4},B={x|x 2-2x-3≤0},则A∩(RB)=
A.(1,4) B.(3,4) C.(1,3) D.(1,2)
若函数h(x)满足
(1)h(0)=1,h(1)=0;
(2)对任意,有h(h(a))=a;
(3)在(0,1)上单调递减。则称h(x)为补函数。已知函数
(1)判函数h(x)是否为补函数,并证明你的结论;
(2)若存在,使得h(m)=m,若m是函数h(x)的中介元,记时h(x)的中介元为xn,且,若对任意的,都有Sn< ,求的取值范围;
(3)当=0,时,函数y= h(x)的图像总在直线y=1-x的上方,求P的取值范围。
已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足.
(1) 求曲线C的方程;
(2)动点Q(x0,y0)(-2<x0<2)在曲线C上,曲线C在点Q处的切线为l向:是否存在定点P(0,t)(t<0),使得l与PA,PB都不相交,交点分别为D,E,且△QAB与△PDE的面积之比是常数?若存在,求t的值。若不存在,说明理由。
在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=,BC=4,在A1在底面ABC的投影是线段BC的中点O。
(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;
(2)求平面A1B1C与平面BB1C1C夹角的余弦值。
如图,从A1(1,0,0),A2(2,0,0),B1(0,2,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0)。
(1)求V=0的概率;
(2)求V的分布列及数学期望。
在△ABC中,角A,B,C的对边分别为a,b,c。已知,。
(1)求证:
(2)若,求△ABC的面积。