满分5 > 高中数学试题 >

某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件...

某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为k(k为正整数).

(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;

(2)假设这三种部件的生产同时开工,试确定正整数k的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.

 

(1) (2) (3)当时完成订单任务的时间最短,此时生产A,B,C三种部件的人数分别为44,88,68 【解析】 【解析】 (Ⅰ)设完成A,B,C三种部件的生产任务需要的时间(单位:天)分别为由题设有 期中均为1到200之间的正整数. (Ⅱ)完成订单任务的时间为其定义域为 易知,为减函数,为增函数.注意到 于是 (1)当时, 此时   , 由函数的单调性知,当时取得最小值,解得 .由于 . 故当时完成订单任务的时间最短,且最短时间为. (2)当时, 由于为正整数,故,此时易知为增函数,则. 由函数的单调性知,当时取得最小值,解得.由于 此时完成订单任务的最短时间大于. (3)当时, 由于为正整数,故,此时由函数的单调性知, 当时取得最小值,解得.类似(1)的讨论.此时 完成订单任务的最短时间为,大于. 综上所述,当时完成订单任务的时间最短,此时生产A,B,C三种部件的人数 分别为44,88,68. 【点评】本题为函数的应用题,考查分段函数、函数单调性、最值等,考查运算能力及用数学知识分析解决实际应用问题的能力.第一问建立函数模型;第二问利用单调性与最值来解决,体现分类讨论思想
复制答案
考点分析:
相关试题推荐

已知数列{an}的各项均为正数,记An)=a1+a2+……+anBn)=a2+a3+……+an+1Cn)=a3+a4+……+an+2n=1,2,……

(1)   若a1=1,a2=5,且对任意n∈N﹡,三个数An),Bn),Cn)组成等差数列,求数列{ an }的通项公式.

(2)   证明:数列{ an }是公比为q的等比数列的充分必要条件是:对任意6ec8aac122bd4f6e,三个数An),Bn),Cn)组成公比为q的等比数列.

 

查看答案

如图5,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.

(Ⅰ)证明:CD⊥平面PAE;

(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.

6ec8aac122bd4f6e

 

查看答案

某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.

一次购物量

1至4件

5至8件

9至12件

13至16件

17件及以上

顾客数(人)

6ec8aac122bd4f6e

30

25

6ec8aac122bd4f6e

10

结算时间(分钟/人)

1

1.5

2

2.5

3

已知这100位顾客中的一次购物量超过8件的顾客占55%.

(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;

(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.

(注:将频率视为概率)

 

查看答案

N=2nn∈N*n≥2),将N个数x1,x2,…,xN依次放入编号为1,2,…,N的N个位置,得到排列P0=x1x2…xN.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前6ec8aac122bd4f6e和后6ec8aac122bd4f6e个位置,得到排列P1=x1x3…xN-1x2x4…xN,将此操作称为C变换,将P1分成两段,每段6ec8aac122bd4f6e个数,并对每段作C变换,得到6ec8aac122bd4f6e;当2≤i≤n-2时,将Pi分成2i段,每段6ec8aac122bd4f6e个数,并对每段C变换,得到Pi+1,例如,当N=8时,P2=x1x5x3x7x2x6x4x8,此时x7位于P2中的第4个位置.

(1)当N=16时,x7位于P2中的第___个位置;

(2)当N=2n(n≥8)时,x173位于P4中的第___个位置.

 

查看答案

函数f(x)=sin (6ec8aac122bd4f6e)的导函数6ec8aac122bd4f6e的部分图像如图4所示,其中,P为图像与y轴的交点,A,C为图像与x轴的两个交点,B为图像的最低点.

(1)若6ec8aac122bd4f6e,点P的坐标为(0,6ec8aac122bd4f6e),则6ec8aac122bd4f6e       ;

(2)若在曲线段6ec8aac122bd4f6e与x轴所围成的区域内随机取一点,则该点在△ABC内的概率为       .

6ec8aac122bd4f6e

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.