已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].
(Ⅰ)求m的值;
(Ⅱ)若a,b,c∈R,且
【解析】
设曲线2x2+2xy+y2=1在矩阵对应的变换作用下得到的曲线为x2+y2=1。
(Ⅰ)求实数a,b的值
(Ⅱ)求A2的逆矩阵
【解析】
已知函数f(x)=ex+ax2-ex,a∈R[
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;
(Ⅱ)试确定a的取值范围,使得曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P
【解析】、
如图,椭圆E:的左焦点为F1,右焦点为F2,离心率。过F1的直线交椭圆于A、B两点,且△ABF2的周长为8
(Ⅰ)求椭圆E的方程。
(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相较于点Q。试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由
【解析】
如图,在长方体ABCD-A1B1C1D1中AA1=AD=1,E为CD中点。
(Ⅰ)求证:B1E⊥AD1;
(Ⅱ)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的行;若存在,求AP的长;若不存在,说明理由。
(Ⅲ)若二面角A-B1EA1的大小为30°,求AB的长
【解析】
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°- sin2(-18°)cos248°
(5)sin2(-25°)+cos255°- sin2(-25°)cos255°
Ⅰ 试从上述五个式子中选择一个,求出这个常数
Ⅱ 根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论
【解析】