已知的前项和满足 ,其中(Ⅰ)求证: 首项为1的等比数列;(Ⅱ)若,求证:,并给指出等号成立的充要条件。
已知椭圆的中心为原点,长轴在 轴上,上顶点为 ,左、右焦点分别为 ,线段 的中点分别为 ,且△是面积为4的直角三角形。(Ⅰ)求该椭圆的离心率和标准方程;
(Ⅱ)过 作直线交椭圆于,,求直线的方程
已知直三棱柱中,,,为的中点。(Ⅰ)求点C到平面的距离;(Ⅱ)若,求二面角的平面角的余弦值。
设其中(Ⅰ)求函数的值域;(Ⅱ)若在 上为增函数,求的最大值
甲、乙两人轮流投篮,每人每次投一票.约定甲先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.[来(Ⅰ) 求甲获胜的概率;(Ⅱ)求投篮结束时甲的投篮次数的分布列与期望
设函数,其中在,曲线在点处的切线垂直于轴(Ⅰ)求a的值;(Ⅱ)求函数极值.