(本题满分12分)过与的交点的直线被圆所截得的弦长为,求此直线方程。
(本题满分12分)已知关于的方程的两个根为
求: (1)的值;
(2)实数的值;
(3)方程的两个根及此时的值
(本题满分12分)已知
(1)求函数的定义域;
(2)判断函数的奇偶性;
(3)求函数的值域.
(本题满分10分)
(1)已知,,求的值。
(2)已知,,,是第三象限角,求 的值。
已知函数.]
(1)求函数的最小值和最小正周期;
(2)设的内角、、的对边分别为,,,且,,
若,求,的值.
【解析】第一问利用
得打周期和最值
第二问
,由正弦定理,得,①
由余弦定理,得,即,②
由①②解得
如图,已知四棱锥的底面ABCD为正方形,平面ABCD,E、F分别是BC,PC的中点,,.
(1)求证:平面;
(2)求二面角的大小.
【解析】第一问利用线面垂直的判定定理和建立空间直角坐标系得到法向量来表示二面角的。
第二问中,以A为原点,如图所示建立直角坐标系
,,
设平面FAE法向量为,则
,,