若,则的值为( )
A.6 B.7 C.8 D.9
设的概率分布如下,则P的值等于 ( )
A. B. C. D. 不确定
将个不同的小球放入个盒子中,则不同放法种数有( )
A. B. C. D.
⊙O1和⊙O2的极坐标方程分别为,.
⑴把⊙O1和⊙O2的极坐标方程化为直角坐标方程;
⑵求经过⊙O1,⊙O2交点的直线的直角坐标方程.
【解析】本试题主要是考查了极坐标的返程和直角坐标方程的转化和简单的圆冤啊位置关系的运用
(1)中,借助于公式,,将极坐标方程化为普通方程即可。
(2)中,根据上一问中的圆的方程,然后作差得到交线所在的直线的普通方程。
【解析】
以极点为原点,极轴为x轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.
(I),,由得.所以.
即为⊙O1的直角坐标方程.
同理为⊙O2的直角坐标方程.
(II)解法一:由解得,
即⊙O1,⊙O2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x.
解法二: 由,两式相减得-4x-4y=0,即过交点的直线的直角坐标方程为y=-x
已知,如图,AB是⊙O的直径,AC切⊙O于点A,AC=AB,CO交⊙O于点P,CO的延长线交⊙O于点F, BP的延长线交AC于点E.
⑴求证:FA∥BE;
⑵求证:
【解析】本试题主要是考查了平面几何中圆与三角形的综合运用。
(1)要证明线线平行,主要是通过证明线线平行的判定定理得到
(2)利用三角形△APC∽△FAC相似,来得到线段成比列的结论。
证明:(1)在⊙O中,∵直径AB与FP交于点O ∴OA=OF
∴∠OAF=∠F ∵∠B=∠F ∴∠OAF=∠B ∴FA∥BE
(2)∵AC为⊙O的切线,PA是弦 ∴∠PAC=∠F
∵∠C=∠C ∴△APC∽△FAC ∴
∴ ∵AB=AC ∴
如图,在中,为边上的中线,为上任意一点,交于点.求证:.
【解析】本试题主要是考查了平面几何中相似三角形性质的运用。根据已知条件,首先做辅助线,然后利用平行性得到相似比,,,然后得到比例相等。充分利用比值问题转化得到结论。
证明:过作,交于,∴,,
∴, , ∵为的中点,,
,,,即.