(本小题14分)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱(底面是正方形的直棱柱)形状的包装盒,E、F在AB上是被切去的等腰直角三角形HEF斜边的两个端点,设AE=FB=xcm.
(1)请用分别表示|GE|、|EH|的长
(2)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?
|
(本小题14分)设函数,曲线过P(1,0),且在P点处的切斜线率为2.
(I)求a,b的值;
(II)证明:.
(本小题14分)如图,四棱锥中,底面ABCD为平行四边形,,,底面ABCD.
(1)求|DB|的长
(2)证明:;
(3)若PD=AD,求二面角D-PA-B的余弦值.
(本小题12分)某批发市场对某种商品的日销售量(单位:吨)进行统计,最近50天的统计结果如下:
若以上表频率作为概率,且每天的销售量相互独立.
② 5天中该种商品恰好有2天的销售量为1.5吨的概率;
②已知每吨该商品的销售利润为2千元,表示该种商品两天销售利润的和(单位:千元),求的分布列及数学期望。
(本小题12分)已知函数.
(1)求函数的最小正周期及单调增区间;
(2)求函数在上的最大值和最小值,并求函数取得最大值和最小值时的自变量的值.
假设2002年我国国民生产总值为a亿元,如果每年平均增长8%,那么经过多少年我国国民生产总值是2002年的2倍?(未知量用对数的形式表示) (12分)