将A、B、C、D、E排成一列,要求A、B、C在排列中顺序为“A、B、C”或“C,B、A”(可以不相邻)这样的排列数有 ( )
A.12种 B.20种 C.40种 D.60种
若(1+)5=a+b (a,b为有理数),则a+b= ( )
A.45 B.55 C.70 D.80
已知函数,,又函数在单调递减,而在单调递增.
(1)求的值;
(2)求的最小值,使对,有成立;
(3)是否存在正实数,使得在上既有最大值又有最小值?若存在,求出m的取值范围;若不存在,请说明理由.
已知.经计算得,,,,,通过观察,我们可以得到一个一般性的结论.
(1)试写出这个一般性的结论;
(2)请用数学归纳法证明这个一般性的结论;
(3)对任一给定的正整数,试问是否存在正整数,使得?
若存在,请给出符合条件的正整数的一个值;若不存在,请说明理由.
阅读下面材料:
根据两角和与差的正弦公式,有
------①
------②
由①+② 得------③
令 有
代入③得 .
(1) 类比上述推理方法,根据两角和与差的余弦公式,证明:
;
(2)若的三个内角满足,直接利用阅读材料及(1)中的结论试判断的形状.
从5名女同学和4名男同学中选出4人参加四场不同的演讲,分别按下列要求,各有多少种不同选法?
(Ⅰ)男、女同学各2名;
(Ⅱ)男、女同学分别至少有1名;
(Ⅲ)在(Ⅱ)的前提下,男同学甲与女同学乙不能同时选出.