某校有40个班,每班50人,从中选派150人参加“学代会”,这个问题中样本容量是( )
A、40 B、50 C、120 D、150
已知函数为常数)
(1)若上单调递增,且
(2)若f(x)在x=1和x=3处取得极值,且在x∈[-6,6]时,函数的图象在直线
的下方,求c的取值范围.
(14分)如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,要求B在AM上,D在AN上,且对角线MN过C点,已知|AB|=3米,|AD|=2米,
(1)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?
(2)当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.
(本题18 分)已知数列:、、且(),与数列:、、、且().
记.
(1)若,求的值;
(2)求的值,并求证当时,;
(3)已知,且存在正整数,使得在,,,中有4项为100.求的值,并指出哪4项为100.
一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:
转速x(转/秒) |
2 |
4 |
5 |
6 |
8 |
每小时生产有缺点的零件数y(件) |
30 |
40 |
60 |
50 |
70 |
(1)画散点图
(2)如果y对x有线性相关关系,求回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺点的零件最多为89个,那么机器的运转速度应控制在什么范围内?(参考数值:,)
.已知是复数,,均为实数(为虚数单位)且复数在复平面上对应的点在第一象限,求复数及实数的取值范围.