(本小题满分14分)
已知函数.
(Ⅰ)当时,如果函数仅有一个零点,求实数的取值范围;
(Ⅱ)当时,试比较与1的大小;
(Ⅲ)求证:.
(本小题满分12分)直线与椭圆交于,两点,已知,,若且椭圆的离心率,又椭圆经过点,为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过椭圆的焦点(为半焦距),求直线的斜率的值;
(Ⅲ)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
(本小题满分12分)
已知数列的前项和.
(Ⅰ) 求数列{}的通项公式;
(Ⅱ)设,求数列{}的前项和.
(本小题满分12分)如图,是圆的直径,点在圆上,,交于点,平面,,.
(Ⅰ)证明:;
(Ⅱ)求平面与平面所成的锐二面角的余弦值.
.(本小题满分12分)在一次数学考试中,第21题和第22题为选做题. 规定每位考生必须且只须在其中选做一题. 设4名考生选做这两题的可能性均为.
(Ⅰ)求其中甲、乙二名学生选做同一道题的概率;
(Ⅱ)设这4名考生中选做第22题的学生个数为,求的概率分布及数学期望.
.(本小题满分12分)
已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)若将的图象向右平移个单位,得到函数的图象,求函数在区间上的最大值和最小值.