(本小题满分12分)
设函数.
⑴ 当时,求函数在点处的切线方程;
⑵ 对任意的函数恒成立,求实数的取值范围.
(本小题满分12分)
已知椭圆C:的离心率为,且过点Q(1,).
(1) 求椭圆C的方程;
(2) 若过点M(2,0)的直线与椭圆C相交于A,B两点,设P点在直线
上,且满足 (O为坐标原点),求实数t的最小值.
(本小题满分12分)某单位为了提高员工素质,举办了一场跳绳比赛,其中男员工12人,女员工18人,其成绩编成如图所示的茎叶图(单位:分),分数在175分以上(含175分)者定为“运动健将”,并给予特别奖励,其他人员则给予“运动积极分子”称号.
⑴ 若用分层抽样的方法从“运动健将”和“运动积极分子”中抽取10人,然后再从这10人中选4人,求至少有1人是“运动健将”的概率;
⑵ 若从所有“运动健将”中选3名代表,用表示所选代表中女“运动健将”的人数,试写出的分布列,并求的数学期望.
(本小题满分12分)在三棱锥中,,,平面平面,为的中点.
(1) 证明:;
(2) 求所成角的大小.
(本小题满分12分)
中,角的对边分别为,且
(1) 求角;
(2) 设函数将函数的图象上各点的纵坐标保持不变,横坐标缩短到原来的,把所得图象向右平移个单位,得到函数的图象,求函数的对称中心及单调递增区间.
已知函数若函数有三个零点,则的取值范围为 .