如图,四棱锥P-ABCD中,底面ABCD为菱形,PA底面ABCD,AC=,PA=2,E是PC上的一点,PE=2EC。
(I) 证明PC平面BED;
(II) 设二面角A-PB-C为90°,求PD与平面PBC所成角的大小
【解析】本试题主要是考查了四棱锥中关于线面垂直的证明以及线面角的求解的运用。
从题中的线面垂直以及边长和特殊的菱形入手得到相应的垂直关系和长度,并加以证明和求解。
解法一:因为底面ABCD为菱形,所以BDAC,又
【点评】试题从命题的角度来看,整体上题目与我们平时练习的试题和相似,底面也是特殊的菱形,一个侧面垂直于底面的四棱锥问题,那么创新的地方就是点E的位置的选择是一般的三等分点,这样的解决对于学生来说就是比较有点难度的,因此最好使用空间直角坐标系解决该问题为好。
已知数列{}中,=1,前n项和。
(Ⅰ)求
(Ⅱ)求{}的通项公式。
【解析】本试题主要考查了数列的通项公式与数列求和的相结合的综合运用。
【点评】试题出题比较直接,没有什么隐含的条件,只要充分利用通项公式和前n项和的关系式变形就可以得到结论。
△ABC中,内角A、B、C成等差数列,其对边a、b、c满足,求A。
【解析】本试题主要考查了解三角形的运用,
因为
【点评】该试题从整体来看保持了往年的解题风格,依然是通过边角的转换,结合了三角形的内角和定理的知识,以及正弦定理和余弦定理,求解三角形中的角的问题。试题整体上比较稳定,思路也比较容易想,先将利用等差数列得到角B,然后利用余弦定理求解运算得到A。
已知正方体中,、分别为的中点,那么异面直线与所成角的余弦值为____________.
【解析】如图连接,则,所以与所成的角即为异面直线所成的角,设边长为2,则,在三角形中.
当函数取得最大值时,___________.
【解析】函数为,当时,,由三角函数图象可知,当,即时取得最大值,所以.
若满足约束条件,则的最小值为____________.
【解析】做出做出不等式所表示的区域如图,由得,平移直线,由图象可知当直线经过点时,直线的截距最 大,此时最小,最小值为.