一个几何体的三视图形状都相同,大小均等,那么这个几何体不可以是
A 球 B 三棱锥 C 正方体 D 圆柱
【解析】分别比较A,B,C的三视图不符合条件,D符合.
已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是
A.x=- B.x-1 C.x=5 D.x=0
【解析】有向量垂直的充要条件得2(x-1)+2=0,所以x=0.D正确.
已知集合M={1,2,3,4},N={-2,2},下列结论成立的是
A.NM B.M∪N=M C.M∩N=N D.M∩N={2}
【解析】显然A,B,C错,D正确;
复数(2+i)2等于
A.3+4i B.5+4i C.3+2i D.5+2i
【解析】
已知函数其中a>0.
(I)求函数f(x)的单调区间;
(II)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;
(III)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值。
【考点定位】本小题主要考查导数的运算,利用导数研究函数的单调性、函数的零点,函数的最值等基础知识.考查函数思想、分类讨论思想.考查综合分析和解决问题的能力.
已知椭圆(a>b>0),点在椭圆上。
(I)求椭圆的离心率。
(II)设A为椭圆的右顶点,O为坐标原点,若Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值。
【考点定位】本小题主要考查椭圆的标准方程和几何性质、直线的方程、平面内两点间距离公式等基础知识. 考查用代数方法研究圆锥曲线的性质,以及数形结合的数学思想方法.考查运算求解能力、综合分析和解决问题的能力.