已知函数f(x)=x2-alnx(a∈R).
(1)若a=2,求f(x)的单调区间和极值;
(2)求f(x)在[1,e]上的最小值.
已知f(x)=ax3+bx2+cx在区间[0,1]上是增函数,在区间
(-上是减函数,又.
(1)求f(x)的解析式;
(2)若方程有三个不等实根,求m的取值范围.
如图,一矩形铁皮的长为8cm,宽为5cm,在四个角上
截去四个相同的小正方形,制成一个无盖的小盒子.
(1)将小盒子的容积V写成关于小正方形的边长的函数;
(2)正方形的边长为多少时,盒子容积最大?求出最大值.
命题:方程有两个不等的正实数根,命题:函数在R上是减函数.若“或”为真命题,“且” 为假命题,求的取值范围.
一个容量为M的样本数据,其频率分布表如下.
(Ⅰ)完成频率分布表 ;
(Ⅱ)画出频率分布直方图 ;
(Ⅲ)利用频率分布直方图,估计总体的众数、中位数及平均数.
【解】 频率分布表 频率分布直方图
分组 |
频数 |
频率 |
(10,20] |
2 |
0.10 |
(20,30] |
3 |
|
(30,40] |
4 |
0.20 |
(40,50] |
|
|
(50,60] |
4 |
0.20 |
(60,70] |
2 |
0.10 |
合计 |
|
1.00 |
已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a、b的取值分别是 .