(满分12分)设底面边长为的正四棱柱中,与平面 所成角为;点是棱上一点.
(1)求证:正四棱柱是正方体;
(2)若点在棱上滑动,求点到平面距离的最大值;
(3)在(2)的条件下,求二面角的大小.
南充市医疗保险实行定点医疗制度,按照“就近就医、方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在的地区附近有A, B, C三家社区医院,并且他们对社区医院的选择是相互独立的.
(1)求甲、乙两人都选择A社区医院的概率;
(2)求甲、乙两人不选择同一家社区医院的概率;
(3)设4名参加保险人员选择A社区医院的人数为x,求x的分布列和数学期望
(满分12分)在锐角△ABC中,已知内角A、B、C所对的边分别为a、b、c,且(tanA-tanB)=1+tanA·tanB.
(1)若a2-ab=c2-b2,求A、B、C的大小;
(2)已知向量=(sinA,cosA),=(cosB,sinB),求|3-2|的取值范围.
已知定义域为的函数满足:(1)对任意的,都有成立;(2)当,.给出如下结论:①对任意,有;②函数值域是;③存在使得;④函数在区间上单调递减的充要条件是“存在,使得”.
其中所有正确命题的序号是 .
已知点P是椭圆上的动点,F1,F2分别为其左、右焦点,O是坐标原点,则的取值范围是 .
已知二面角为60°,动点P、Q分别在面、内,P到的距离为,Q到的距离为,则P、Q两点之间距离的最小值为 .