(本小题满分14分)(注意:在试题卷上作答无效)
已知椭圆
的左、右焦点分别为
,若以
为圆心,
为半径作圆
,过椭圆上一点
作此圆的切线,切点为
,且
的最小值不小于为
.
(1)求椭圆的离心率
的取值范围;
(2)设椭圆的短半轴长为
,圆
与
轴的右交点为
,过点
作斜率为
的直线
与椭圆相交于
两点,若
,求直线
被圆
截得的弦长
的最大值.

(本小题满分13分)(注意:在试题卷上作答无效)
已知函数
的反函数为
,定义:若对给定的实数
,函数
与
互为反函数,则称
满足“
和性质”.
(1)判断函数
是否满足“1和性质”,并说明理由;
(2)若
,其中
满足“2和性质”,则是否存在实数a,使得
对任意的
恒成立?若存在,求出
的范围;若不存在,请说明理由.
(本小题满分12分)
若关于
的实系数方程
有两个根,一个根在区间
内,另一根在区间
内,记点
对应的区域为
.
(1)设
,求
的取值范围;
(2)过点
的一束光线,射到
轴被反射后经过区域
,求反射光线所在直线
经过区域
内的整点(即横纵坐标为整数的点)时直线
的方程.
(本小题满分11分)(注意:在试题卷上作答无效)
已知
为坐标原点,向量
,点
是直线
上的一点,且点
分有向线段
的比为
.
(1)记函数
,
,讨论函数
的单调性,并求其值域;
(2)若
三点共线,求
的值.
(本小题满分10分)(注意:在试题卷上作答无效)
已知等比数列
中,
,
分别为
的三内角
的对边,且
.
(1)求数列
的公比
;
(2)设集合
,且
,求数列
的通项公式.
.已知定义域为
的函数
对任意实数
满足:
,且
不是常函数,常数
使
,给出下列结论:①
;②
是奇函数;③
是周期函数且一个周期为
;④
在
内为单调函数.其中正确命题的序号是___________.
