设平面内两定点、,直线和相交于点,且它们的斜率之积为定值。
(I)求动点的轨迹的方程;
(II)设,过点作抛物线的切线交曲线于、两点,求的面积。
某项新技术进入试用阶段前必须对其中三项不同指标甲、乙、丙进行通过量化检测。假设该项新技术的指标甲、乙、丙独立通过检测合格的概率分别为,指标甲、乙、丙检测合格分别记4分、2分、4分,若某项指标不合格,则该项指标记0分,各项指标检测结果互不影响。
(Ⅰ)求该项技术量化得分不低于8分的概率;
(Ⅱ)记该技术的三个指标中被检测合格的指标个数为随机变量,求的分布列与数学期望。
如图:C、D是以AB为直径的圆上两点,在线段上,且 ,将圆沿直径AB折起,使点C在平面ABD的射影E在BD上.
(I)求证平面ACD⊥平面BCD;
(II)求证:AD//平面CEF.
已知函数
(I)若,求sin2x的值;
(II)求函数的最大值与单调递增区间.
已知等差数列的公差,它的前n项和为,若且成等比数列.
(I)求数列的通项公式;
(II)设数列的前n项和为Tn,求Tn.
给出下列四个命题:①若直线过抛物线的焦点,且与这条抛物线交于A、B两点,则的最小值为2;②双曲线的离心率为;③若⊙⊙,则这两圆恰有2条公切线;④若直线与直线互相垂直,则其中正确命题的序号是 .(把你认为正确命题的序号都填上)