抛物线的准线方程是( )
A. B. C. D.
若是纯虚数,则的值为( )
A.-7 B. C.7 D.或
(本小题满分14分)已知函数(为常数,).
(Ⅰ)若是函数的一个极值点,求的值;
(Ⅱ)求证:当时,在上是增函数;
(Ⅲ)若对任意的(1,2),总存在,使不等式成立,求实数的取范围.
(本小题满分14分)已知椭圆:的离心率是,其左、右顶点分别为,,为短轴的端点,△的面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)为椭圆的右焦点,若点是椭圆上异于,的任意一点,直线,与直线分别交于,两点,证明:以为直径的圆与直线相切于点.
(本小题满分14分)已知数列中,,且
(1)设,求数列的通项公式;
(1)若中,,且成等比数列,求的值及的前项和.
(本小题满分14分)如图5,正△的边长为4,是边上的高,分别是和边的中点,现将△沿翻折成直二面角.
(1)试判断直线与平面的位置关系,并说明理由;
(2)求二面角的余弦值;
(3)在线段上是否存在一点,使?如果存在,求出的值;如果不存在,请说明理由。