甲,乙两人进行乒乓球比赛,约定每局胜者得分,负者得分,比赛进行到有一人比对方多分或打满局时停止.设甲在每局中获胜的概率为,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为.
(Ⅰ)求的值;
(Ⅱ)设表示比赛停止时比赛的局数,求随机变量的分布列和数学期望.
若的图像与直线相切,并且切点横坐标依次成公差为的等差数列.
(1)求和的值;
(2)在⊿ABC中,a、b、c分别是∠A、∠B、∠C的对边.若是函数图象的一个对称中心,且a=4,求⊿ABC外接圆的面积.
已知P是双曲线上一点,F1、F2是左右焦点,⊿P F1F2的三边长成等差数列,且∠F1 P F2=120°,则双曲线的离心率等于
在斜三棱柱中, 底面是以∠ABC为直角的等腰三角形, 点在平面ABC上的射影为AC的中点D, AC=2,=3,则与底面ABC所成角的正切值为 .
如果随机变量则,
,.已知随机变量,则 ;
若展开式中二项式系数之和是1024,常数项为,则实数的值是 .