(本小题满分10分)
已知数列满足且对任意,恒有
(1) 求数列的通项公式;
(2) 设区间中的整数个数为求数列的通项公式。
(本小题满分10分)
假定某人每次射击命中目标的概率均为,现在连续射击3次。
(1) 求此人至少命中目标2次的概率;
(2) 若此人前3次射击都没有命中目标,再补射一次后结束射击;否则。射击结束。记此人射击结束时命中目标的次数为X,求X的数学期望。
选修4-5:不等式选讲(本小题满分10分)
已知实数满足,且,求证:
选修4-2:矩阵与变换(本小题满分10分)
在平面直角坐标系xoy中,求圆C的参数方程为为参数r>0),以O为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为若直线与圆C相切,求r的值。
选修4-2:矩阵与变换(本小题满分10分)
已知矩阵M
(1) 求矩阵M的逆矩阵;
(2) 求矩阵M的特征值及特征向量;
选修4-1:几何证明选讲(本小题满分10分)
如图, 半径分别为R,r(R>r>0)的两圆内切于点T,P是外圆上任意一点,连PT交于点M,PN与内圆相切,切点为N。求证:PN:PM为定值。