设数列{n}满足1=,n+1=n2+1,.
(Ⅰ)当∈(-∞,-2)时,求证:M;
(Ⅱ)当∈(0,]时,求证:∈M;
(Ⅲ)当∈(,+∞)时,判断元素与集合M的关系,并证明你的结论.
某大楼共5层,4个人从第一层上电梯,假设每个人都等可能地在每一层下电梯,并且他们下电梯与否相互独立. 又知电梯只在有人下时才停止.
(Ⅰ) 求某乘客在第层下电梯的概率 ;
(Ⅱ)求电梯在第2层停下的概率;
(Ⅲ)求电梯停下的次数的数学期望.
求函数最大值.
在极坐标系下,已知圆和直线.
(1)求圆和直线的直角坐标方程;
(2)当时,求直线与圆公共点的极坐标.
已知M=,试计算
如图,在梯形中,∥BC,点,分别在边,上,设与相交于点,若,,,四点共圆
求证:.