如图1,在边长为的正三角形中,,,分别为,,上的点,且满足.将△沿折起到△的位置,使二面角成直二面角,连结,.(如图2)
(Ⅰ)求证:⊥平面;
(Ⅱ)求直线与平面所成角的大小.
某工厂生产甲、乙两种产品,甲产品的一等品率为,二等品率为;乙产品的一等品率为,二等品率为.生产件甲产品,若是一等品,则获利万元,若是二等品,则亏损万元;生产件乙产品,若是一等品,则获利万元,若是二等品,则亏损万
元.两种产品生产的质量相互独立.
(Ⅰ)设生产件甲产品和件乙产品可获得的总利润为(单位:万元),求的分布列;
(Ⅱ)求生产件甲产品所获得的利润不少于万元的概率.
已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)若函数的图象是由的图象向右平移个单位长度,再向上平移1个单位长度得到的,当[,]时,求的最大值和最小值.
如图,在边长为的正方形中,点在上,正方形以为轴逆时针旋转角到的位置 ,同时点沿着从点运动点,,点在上,在运动过程中点始终满足,记点在面上的射影为,则在运动过程中向量与夹角的正切值的最大值为 .
抛物线的准线方程为 ;此抛物线的焦点是,则经过和点,且与准线相切的圆共有 个.
在如图所示的茎叶图中,乙组数据的中位数是 ;若从甲、乙两组数据中分别去掉一个最大数和一个最小数后,两组数据的平均数中较大的一组是 组.