如图,是⊙的直径, 是⊙的切线,与的延长线交于点,为切点.若,,的平分线与和⊙分别交于点、,求的值。
设函数
(1)若关于x的不等式在有实数解,求实数m的取值范围;
(2)设,若关于x的方程至少有一个解,求p 的最小值.
(3)证明不等式:
已知方向向量为的直线l过椭圆的焦点以及点(0,),直线l与椭圆C交于 A 、B 两点,且A、B两点与另一焦点围成的三角形周长为。
(1)求椭圆C的方程
(2)过左焦点且不与x轴垂直的直线m交椭圆于M、N两点,
(O坐标原点),求直线m的方程
如图,四棱锥中,底面为平行四边形,,,⊥底面.
(1)证明:平面平面;
(2)若二面角为,求与平面所成角的正弦值。
某高校在2012年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.
(1)分别求第3,4,5组的频率;
(2) 若该校决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试。
(ⅰ) 已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙恰有一人进入第二轮面试的概率;
(ⅱ) 学校决定在这已抽取到的6名学生中随机抽取2名学生接受考官L的面试,设第4组中有名学生被考官L面试,求的分布列和数学期望.
若的图像与直线相切,并且切点横坐标依次成公差为的等差数列.
(1)求和的值;
(2) ⊿ABC中,a、b、c分别是∠A、∠B、∠C的对边。若是函数 图象的一个对称中心,且a=4,求⊿ABC外接圆的面积。