,定义,其中n∈N*.
(Ⅰ)求的值,并求证:数列{an}是等比数列;
(II)若,其中n∈N*,试比较9与大小,并说明理由.
)如图,AC 是圆 O 的直径,点 B 在圆 O 上,∠BAC=30°,BM⊥AC交 AC 于点 M,EA⊥平面ABC,FC//EA,AC=4,EA=3,FC=1.
(I)证明:EM⊥BF;
(II)求平面 BEF 与平面ABC 所成锐二面角的余弦值.
在⊿ABC中,a,b,c分别为内角A,B,C所对的边,A<B<C,A,B,C成等差数列,公差为,且也成等差数列.
(I)求;
(II)若,求⊿ABC的面积。
在△ABC中,,D是BC边上一点(D与B、C不重合),且,则=__________.
给定集合A={a1,a2,a3,……an}(),定义ai+aj()中所有不同值的个数为集合A元素和的容量,用L(A)表示。若A={2,4,6,8},则L(A)= ;若数列{an}是等差数列, 公差不为0,设集合A={a1,a2,a3,……am}(其中,m为常数),则L(A)关于m的表达式为 .
若a,b均为正实数,且恒成立,则m的最小值是 。