(本题满分15分)如图,分别过椭圆E:左右焦点、的动直线l1、l2相交于P点,与椭圆E分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率、、、满足.已知当l1与x轴重合时,,.
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在定点M、N,使得为定值.若存在,求出M、N点坐标,若不存在,说明理由.
(本题满分14分)如图,四边形ABCD中,为正三角形,,,AC与BD交于O点.将沿边AC折起,使D点至P点,已知PO与平面ABCD所成的角为,且P点在平面ABCD内的射影落在内.
(Ⅰ)求证:平面PBD;
(Ⅱ)若已知二面角的余弦值为,求的大小.
(本题满分14分)数列是公比为的等比数列,且是与的等比中项,前项和为.数列 是等差数列,,前项和满足为常数,且.
(Ⅰ)求数列的通项公式及的值;
(Ⅱ)比较与的大小.
(本题满分14分)已知函数(R,,,)图象如图,P是图象的最高点,Q为图象与x轴的交点,O为原点.且,,.
(Ⅰ)求函数的解析式;
(Ⅱ)将函数图象向右平移1个单位后得到函数的图象,当时,求函数的最大值.
.已知为抛物线C:上的一点,为抛物线C的焦点,其准线与轴交于点,直线与抛物线交于另一点,且,则点坐标为 .
非零向量,夹角为,且,则的取值范围
为 .