复数的虚部为 ( )
(A) (B) (C) (D)
已知集合,则= ( )
(A) (B) (C) (D)
(本题满分15分)已知函数.
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)是否存在实数,使得函数有唯一的极值,且极值大于?若存在,,求的取值
范围;若不存在,说明理由;
(Ⅲ)如果对,总有,则称是的凸
函数,如果对,总有,则称是的凹函数.当时,利用定义分析的凹凸性,并加以证明。
(本题满分15分)设椭圆的离心率右焦点到直线的距离,为坐标原点。
(Ⅰ)求椭圆的方程;
(Ⅱ)过点作两条互相垂直的射线,与椭圆分别交于两点,证明点到直线的距离为定值,并求弦长度的最小值.
(本题满分14分)如图多面体PQABCD由各棱长均为2的正四面体和正四棱锥拼接而成
(Ⅰ)证明PQ⊥BC;
(Ⅱ)若M为棱CQ上的点且,
求的取值范围,使得二面角P-AD-M为钝二面角。
(本题满分14分)已知等差数列的前项和为,等比数列的前项和为,它们满足,,,且当时,取得最小值.
(Ⅰ)求数列、的通项公式;
(Ⅱ)令,如果是单调数列,求实数的取值范围.