满分5 > 高中数学试题 >

(本小题满分12分) 如图,正方形与梯形所在的平面互相垂直,,∥, ,点在线段上...

(本小题满分12分)

     如图,正方形6ec8aac122bd4f6e与梯形6ec8aac122bd4f6e所在的平面互相垂直,6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e,

6ec8aac122bd4f6e,点6ec8aac122bd4f6e在线段6ec8aac122bd4f6e上.

6ec8aac122bd4f6e

   (I)当点6ec8aac122bd4f6e6ec8aac122bd4f6e中点时,求证:6ec8aac122bd4f6e∥平面6ec8aac122bd4f6e

   (II)当平面6ec8aac122bd4f6e与平面6ec8aac122bd4f6e所成锐二面角的余弦值为6ec8aac122bd4f6e时,求三棱锥6ec8aac122bd4f6e的体积.

 

(1)见解析;(2)   【解析】本试题主要是考查了线面平行的判定和二面角的求解和锥体体积公式的运用。 (1)以以直线、、分别为轴、轴、轴建立空间 直角坐标系,然后表示直线的方向向量,和平面的法向量,利用向量的垂直关系来证明线面平行。 (2)结合已知条件中平面与平面所成锐二面角的余弦值为时,得到三棱锥的高,然后求解体积。 【解析】 (1)以直线、、分别为轴、轴、轴建立空间 直角坐标系,则,,,所以. ∴————————2分     又,是平面的一个法向量.     ∵即     ∴∥平面——————4分      (2)设,则, 又 设,则,即.——6分  设是平面的一个法向量,则 取 得       即  又由题设,是平面的一个法向量,——————8分 ∴   ————10分 即点为中点,此时,,为三棱锥的高, ∴      ————————————12分
复制答案
考点分析:
相关试题推荐

(本小题满分12分)

6ec8aac122bd4f6e某班甲、乙两名同学参加l00米达标训练,在相同条件下两人l0次训练的成绩(单位:秒)如下:

 

1

2

3

4

5

6

7

8

9

10

11.6

12.2

13.2

13.9

14.0

11.5

13.1

14.5

11.7

14.3

12.3

13.3

14.3

11.7

12.0

12.8

13.2

13.8

14.1

12.5

 

(I)请作出样本数据的茎叶图;如果从甲、乙两名同学中选一名参加学校的100米比赛,从成绩的稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答结论).

(Ⅱ)从甲、乙两人的10次训练成绩中各随机抽取一次,求抽取的成绩中至少有一个比12.8秒差的概率.

(Ⅲ)经过对甲、乙两位同学的多次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5]

之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率.

 

查看答案

(本小题满分12分)

已知公差不为零的等差数列6ec8aac122bd4f6e的前4项和为10,且6ec8aac122bd4f6e成等比数列.

   (Ⅰ)求通项公式6ec8aac122bd4f6e

   (Ⅱ)设6ec8aac122bd4f6e,求数列6ec8aac122bd4f6e的前6ec8aac122bd4f6e项和6ec8aac122bd4f6e.

 

查看答案

 四棱锥6ec8aac122bd4f6e的三视图如右图所示,四棱锥6ec8aac122bd4f6e的五个顶点都在一个球面上,6ec8aac122bd4f6e6ec8aac122bd4f6e分别是棱6ec8aac122bd4f6e6ec8aac122bd4f6e的中点,直线6ec8aac122bd4f6e被球面所截得的线段长为6ec8aac122bd4f6e,则该球表面积为       .

6ec8aac122bd4f6e

 

查看答案

 已知抛物线6ec8aac122bd4f6e,过其焦点且斜率为1的直线交抛物线于6ec8aac122bd4f6e6ec8aac122bd4f6e两点,若线段6ec8aac122bd4f6e的中点的纵坐标为2,则该抛物线的准线方程为          .

 

查看答案

右图所示的程序是计算函数6ec8aac122bd4f6e函数值的程序,若输出的6ec8aac122bd4f6e值为4,则输入的6ec8aac122bd4f6e值是          .

6ec8aac122bd4f6e

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.