已知直线L经过点.则L的倾斜角是( )
A. B. C. D.
已知全集=( )
A.{3} B.{5} C.{1,2,4,5} D.{1,2,3,4}
圆O是的外接圆,过点C的圆的切线与AB的延长线交于点D,,
AB=BC=3,求BD以及AC的长.
已知函数的图像过坐标原点,且在点处的切线的斜率是.
(1)求实数的值;
(2)求在区间上的最大值;
(3)对任意给定的正实数,曲线上是否存在两点,使得是以为
直角顶点的直角三角形,且此三角形斜边的中点在轴上?请说明理由.
已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为.
(I)求椭圆方程;
(II)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程.
在四棱锥中,底面,,,,
,是的中点.
(1) 证明:;
(2) 证明:平面;
(3) 求二面角的余弦值.