设集合;则( )
A. B. C. D.
设为虚数单位,则复数=( )
A. B. C. D.
(本小题满分14分)设,函数.
(1) 若,求曲线在处的切线方程;
(2) 若无零点,求实数的取值范围;
(3) 若有两个相异零点,求证: .
(本题满分14分
已知椭圆:的离心率为,以原点为圆心,
椭圆的短半轴长为半径的圆与直线相切.
⑴求椭圆C的方程;
⑵设,、是椭圆上关于轴对称的任意两个不同的点,连结交椭圆
于另一点,求直线的斜率的取值范围;
⑶在⑵的条件下,证明直线与轴相交于定点.
(本题满分14分)在数列中,,,
(1)求数列的通项公式;
(2)求数列的前项和;
(3)在(2)的条件下指出数列的最小项的值,并证明你的结论。
(本题满分14分)如图, 在直三棱柱中,,,
,点是的中点.
⑴求证:;
⑵求证:平面;
⑶求二面角的正切值.