(本小题满分14分)已知椭圆的左焦点为F,左右顶点分别为A,C上顶点为B,过F,B,C三点作,其中圆心P的坐标为.(1) 若FC是的直径,求椭圆的离心率;(2)若的圆心在直线上,求椭圆的方程.
(本题满分14分)为赢得2010年广州亚运会的商机,某商家最近进行了新科技产品的市场分析,调查显示,新产品每件成本9万元,售价为30万元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:万元,)的平方成正比,已知商品单价降低2万元时,一星期多卖出24件.(1)将一个星期的商品销售利润表示成的函数;
(2)如何定价才能使一个星期的商品销售利润最大?
(本题12分)如图所示,在直四棱柱中, ,点是棱上一点.
(1)求证:面;
(2)求证:;
(本题满分14分)
有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.
|
优秀 |
非优秀 |
总计 |
甲班 |
10 |
|
|
乙班 |
|
30 |
|
合计 |
|
|
105 |
已知在全部105人中抽到随机抽取1人为优秀的概率为
(1)请完成上面的列联表;
(2)根据列联表的数据,若按的可靠性要求,能否认为“成绩与班级有关系” .
(3)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6或10号的概率.
(本小题共12分)已知函数
(1)求的最小正周期; (2)若,, 求的值
(坐标系与参数方程选做题)直线截曲线(为参数)的弦长为_ _