已知椭圆C1的中心在原点、焦点在x轴上,抛物线C2的顶点在原点、焦点在x轴上。小明从曲线C1,C2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x,y)。由于记录失误,使得其中恰好有一个点既不在椭圆上C1上,也不在抛物线C2上。小明的记录如下:
据此,可推断椭圆C1的方程为 .
已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于 .
若不等式|x-m|<1成立的充分不必要条件是<x<,则实数m的取值范围是 .
双曲线=1的两条渐近线互相垂直,那么该双曲线的离心率是 .
已知分别是双曲线的两个焦点,和是以(为坐标原点)为圆心,为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为( )
A. B. C. D.
已知四棱锥底面四边形中顺次三个内角的大小之比为,此棱锥的侧棱与底面所成的角相等,则底面四边形的最小角是( ).
A. B. C. D.无法确定的