(本小题满分14分)
动圆G与圆外切,同时与圆内切,设动圆圆心G的轨迹为。
(1)求曲线的方程;
(2)直线与曲线相交于不同的两点,以为直径作圆,若圆C与轴相交于两点,求面积的最大值;
(3)已知,直线与曲线相交于两点(均不与重合),且以为直径的圆过点,求证:直线过定点,并求出该点坐标。
(本题满分13分)如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱,,底面为直角梯形,其中BC∥AD, AB⊥AD, ,O为AD中点.
(1)求直线与平面所成角的余弦值;
(2)求点到平面的距离
(3)线段上是否存在点,使得二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.
(本小题满分12分)
设函数.
(Ⅰ)解不等式;
(Ⅱ)对于实数,若,求证.
题满分12分)
.如图,平行六面体ABCD-A1B1C1D1中,∠BAD=∠BAA1=∠DAA1=60°,
(1)当AA1=3,AB=2,AD=2,求AC1的长;
(2)当底面ABCD是菱形时,求证:
(本小题满分12分)
设命题:方程表示焦点在坐标轴上的双曲线,命题:。
(1)写出命题的否定;
(2)若“或”为真命题,求实数的取值范围。
(本小题满分12分)
如图,一种电影放映灯的反射镜面是旋转椭圆面的一部分.
过对称轴的截口是椭圆的一部分,灯丝位于椭圆的一个焦点上,片门位于另一个焦点上,由椭圆一个焦点发出的光线,经过旋转椭圆面反射后集中到另一个焦点.已知,,试建立适当的坐标系,求截口所在椭圆的方程.