已知函数
(Ⅰ) 当时, 求函数的单调增区间;
(Ⅱ) 求函数在区间上的最小值;
(Ⅲ) 设,若存在,使得成立,求实数的取值范围.
已知直线的极坐标方程为,圆M的参数方程(其中为参数)。
(1)将直线的极坐标方程化为直角坐标方程;
(2)求圆M上的点到直线的距离的最小值。
甲乙两个学校高三年级分别为1100人,1000人,为了统计两个学校在地区二模考试的数学科目成绩,釆用分层抽样抽取了 105名学生的成绩,并作出了部分频率分布表如下:(规定考试成绩在[120,150]内为优秀)
甲校:
分组 |
[70,80) |
[80,90) |
[90,100) |
[100,110) |
[110,120) |
[120,130) |
[130,140) |
[140,150] |
频数 |
2 |
3 |
10 |
15[ |
15 |
X |
3 |
1 |
乙校:
分组 |
[70,80) |
[80,90) |
[90,100) |
[100,110] |
[110,120) |
[120,130) |
[130,140) |
[140,150] |
频数 |
1 |
2 |
9 |
8 |
10 |
10 |
y |
3 |
(1)计算x, y的值;
(2)由以上统计数据填写下面2X2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.
附:
P(k2>k0) |
0. 10 |
0. 025 |
0. 010 |
K |
2. 706 |
5. 024 |
6. 635 |
设函数,.
(Ⅰ)当时,取得极值,求的值;
(Ⅱ)若在内为增函数,求的取值范围.
如图,已知两个正方形ABCD 和DCEF不在同一平面内,M,N分别为AB,DF的中点。用反证法证明:直线ME 与 BN 是两条异面直线。
设对于任意实数,不等式≥m恒成立.求m的取值范围;