、对于函数与函数有下列命题:
①无论函数的图像通过怎样的平移所得的图像对应的函数都不会是奇函数;
②函数的图像与两坐标轴及其直线所围成的封闭图形的面积为4;
③方程有两个根;
④函数图像上存在一点处的切线斜率小于0;
⑤若函数在点P处的切线平行于函数在点Q处的切线,则直线PQ的斜率为,其中正确的命题是________.(把所有正确命题的序号都填上)
已知,设,则由函数的图象与x轴、直线 所围成的封闭图形的面积为 .
从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球,
共有种取法,在这种取法中,可以分为两类:一类是取出的m个球全部为白球,
另一类是取出的m个球中有1个黑球,共有种取法,
即有等式:成立.试根据上述思想可得
(用组合数表示)
事件相互独立,若,则 .
设集合函数, 且, 则的取值范围是 .
设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意x∈[a,b],
都有|f(x)-g(x)|≤1成立,则称f(x)和g(x)在[a,b]上是“紧密函数”.若
与g(x)=mx-1在[1,2]上是“紧密函数”,则m的取值范围是( )
A.[0,1] B.[2,3] C.[1,2] D.[1,3]