(12分)已知某类型的高射炮在它们控制的区域内击中具有某种速度敌机的概率为.
(Ⅰ)假定有5门这种高射炮控制某个区域,求敌机进入这个区域后被击中的概率;
(Ⅱ)要使敌机一旦进入这个区域内有90%以上的概率被击中,至少需要布置几门这类高射炮?(参考数据,)
(12分) 编号为1,2,3的三位学生随意入坐编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的个数是.
(1)求随机变量的概率分布;
(2)求随机变量的数学期望和方差。
(12分) 有20件产品,其中5件是次品,其余都是合格品,现不放回的从中依次抽2件.
求:⑴第一次抽到次品的概率;
⑵第一次和第二次都抽到次品的概率;
⑶在第一次抽到次品的条件下,第二次抽到次品的概率.
极坐标方程化为直角坐标方程是 .
直线被圆截得的弦长为______________。
已知10件产品,其中3件次品,不放回抽取3次,已知第一次抽到是次品,则第三次抽到次品的概率为_________。