在中,,动点P的轨迹为曲线E,曲线E过点C且满足|PA|+|PB|为常数。
(1)求曲线E的方程;
(2)是否存在直线L,使L与曲线E交于不同的两点M、N,且线段MN恰被直线平分?若存在,求出L的斜率的取值范围;若不存在说明理由。
设函数是定义在上的偶函数,当时,(是实数)。
(1)当时,求f(x)的解析式;
(2)若函数f(x)在(0,1]上是增函数,求实数的取值范围;
(3)是否存在实数,使得当时,f(x)有最大值1.
如图,四面体ABCD中,O是BD的中点,CA=CB=CD=BD=2,AB=AD=。
(1)求证:AO⊥平面BCD;
(2)求E到平面ACD的距离;
(3)求异面直线AB与CD所成角的余弦值。
如图,有三个并排放在一起的正方形,.
(1)求的度数;
(2)求函数的最大值及取得最大值时候的x值。
【解析】本试题主要是考查了三角函数的两角和差的三角公式的运用以及三角函数性质的综合运用。
(1)妨设正方形边长为1,易知,可得得到结论。
(2)可知y的最大值,进而得到x的取值集合。
掷两枚骰子,记事件A为“向上的点数之和为n”.
(1)求所有n值组成的集合;
(2)n为何值时事件A的概率P(A)最大?最大值是多少?
(3)设计一个概率为0.5的事件(不用证明)
如图所示,圆O上一点C在直径AB上的射影为D,CD=4,BD=8,则圆O的半径等于