如图6所示,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上.
图6
(1)求抛物线E的方程;
(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q,证明以PQ为直径的圆恒过y轴上某定点.
如图,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N分别为A′B和B′C′的中点.
(1)证明:MN∥平面A′ACC′;
(2)求三棱锥A′-MNC的体积.
(锥体体积公式V=Sh,其中S为底面面积,h为高)
某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.
分数段 |
[50,60) |
[60,70) |
[70,80) |
[80,90) |
x∶y |
1∶1 |
2∶1 |
3∶4 |
4∶5 |
已知函数(其中,,)的部分图象如图所示.
(1)求,,的值;
(2)已知在函数图象上的三点的横坐标分别为,求的值.
数列对任意,满足.
(1)求数列通项公式;
(2)若,求的通项公式及前项和.
为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行
了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图
(如图所示),记甲、乙、丙所调查数据的标准差分别为s1、s2、s3,则它们的大小关系
为 .(用“>”连接)